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Wormhole Solution in Bergmann-Wagoner Scalar- 
Tensor Gravitational Theory 
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We give a Euclidean wormhole solution in the vacuum Bergmann-Wagoner 
scalar-tensor gravitational theory. We show that this wormhole, unlike others, 
has complex charge and is a baby universe (half a wormhole). 

1. INTRODUCTION 

Bergmann-Wagoner gravitational theory (BWT) (Will, 1986) is a gen- 
eral scalar-tensor theory in which the Brans-Dicke parameter to and cosmo- 
logical function A depend upon the scalar gravitational field d~. The 
Brans-Dicke gravitational theory is a simple example of BWT corresponding 
to to = const and A = 0. 

Since Hawking (1988) found the first Euclidean wormhole solution in 
quantum cosmology, much work has been done in this field (Giddings and 
Strominger, 1988; Coleman, 1988; Ghoroka and Tamka, 1991). Because 
scalar-tensor theory is important for quantum cosmology, we seek the Euclid- 
ean wormhole so.lution of BWT. In this paper, on the basis of the wormhole 
wave function that satisfies Hawking's boundary condition in BWT quantum 
cosmology (Liu and Chert, 1992), the vacuum Euclidean wormhole of BWT 
is found. It is shown that its conserved charge is complex and it is a half 
wormhole (baby universe). 

In Section 2 a Euclidean wormhole configuration is found by solving 
the Euclidean BWT equation; Section 3 contains a brief discussion. 
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2. W O R M H O L E  S O L U T I O N  

The vacuum BWT action reads 

= I t,.~..,~ ,~ _ 2doA(do)] (l) SBW l~ 2 d4x  , / ---g[doR - to~do)do- o ~-.~-.v 

for the R ~ X S 3 topology with Roberts and Walker metric 

ds 2 = 0"2(dr - a2(t) dl~ 2) (2) 

where do(t) is the conventional real scalar gravitational field, 

0"2 = /2/24,rr2 ' lp = Planck length 

R = 60"-2a-2(aa '' + a '2 + 1) (3) 

and prime denotes the time derivative with respect to the cosmic time t. 
After integration with respect to space coordinates and partial integration 

with respect to the term a2a"do, we have 

'f[ SBw = ~ dt  -a '2ado  - a'do'a z + ado + 

~ a3doA(do)] 

we introduce the transformations 

= dol/2a,  d'r = do1/2 dt  

1/2 I (2to(do)- 3. do_, ddo, 
" =  \ 12 

then 

to(do) a3do_ ido,2 (4) 
6 

1 
h(Xl) = ~ 0.2A(do)do-t 

dt  d r  
a 6 '  

ddo ,3n/2(to(do) + 3)'~-m d'q 
a-; -=q'  ~, i? } 

( )-,,2 
da _ d~ 1 2to(do) + 3 d~ 
dt d"r 2 ~ �9 T2 d r  

so the BW action becomes 

1/2 
a-q _ (2to(do) + 3) do-t ado 
dt  \ 1-2 " d-7 

(5) 
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let 

SBW=2 -~-r ~4h('~)-- \d'rl + \ d ' r l J  

dT = ~(b) db, d~ _ a t  
d-~ - ~- '(b) d--b 

Introduce the conformal transformation 

ds 2 = ~2(b)a2(-db2 + d f ~ )  

We have 

Let 

SBw= ~ db r  ~4h(Xl ) _  \ d b l  + r - ~  

(6) 

(7) 

(8) 

db = i db (9) 

We get the Euclidean action 

SEBw = --iSBw = ~  db g2_  {4h.(.q) + \db}  - ~ - ~  

The corresponding Euclidean BW Lagrangian is (a dot denotes time 
derivative with respect to the Euclidean conformal time b) 

LEBW = �89 + �89162 _ �89 _ , 2_.2 ~-r ( l l )  

The classical Euclidean BW gravitational equation can be derived from 
the least action principle. 

By variation with respect to I~ and "q, we get the l~-equation 

dg 06 L - L = ~ - r + 2~3X(-n) + r = 0 (12) 

and the t-equation 

d 3 O_OL= d 1 64Oh(n) = 0  (13) 
d'~ 0"-~ L - On d-~ (-{2"/I) - 2 0~q 

Suppose that A(d0) is a slowly varying function of $, which is to say, 
K('q) varies with "q slowly. We can set 

ax(n_____)) ---> 0 a.q 
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From (13) we obtain the conserved charge of the wormhole 

3f2oJ(qb) + 3) I/2 dqb 
q =-- ~2"Cl =--a ~ ~ (14) 

where ? = it is the Euclidean cosmic time. 
After we substitute (14) in (12), we get 

_ { + 2~3X(.q) + ~-3q2 = 0 (15) 

Now we define 

f ( ~ )  = ~ 2 _  1 (16)  

Then the second-order derivatives of ~(b) with respect to b are replaced by 
the first-order derivatives of f (~)  with respect to 6: 

df(~) _ 2~ = 2~ - 4~3X('q) - 2~-3q z (17) 

After integration with respect to (17), we have 

f(~) = ~2 _ ~4X(.rl ) + ~-2q1 + a (18) 

where A is an integration constant. 
The criteria forf(~) as a wormhole solution are for ~ to take its maximum 

value ~m and minimum value ~b equal to -- l  and for f(~) ( > - 1 )  to vary 
smoothly between ~,. and ~b (Ghoroka and Tanuka, 1991). 

When f(~) = - 1, (18) becomes 

~6 _ X-t~4 _ X-I (A + 1)~j2 _ ~.-Iq2 = 0 (19)  

We let 

~2 = y + 1/(3~) 

Then (19) can be rewritten as 

y3 + py  + Q = O 

where 

3X z , Q - 27k3 ~ k(A + I) - -  k2q 2 

(20) 

From the criteria demands for a wormhole solution we have ~,. > >  ~b 
and ~2 > 0, so the roots Yl and Y2 (corresponding to ~., and ~b, respectively) 
of equation (20) should satisfy 
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Yl > >  Y2, Yl.2 > - l / ( 3 K )  (21) 

According to the criterion for a cubic equation, when 

equation (19) does not have a wormhole solution, owing to the fact that the 
roots of equation (20) do not satisfy condition (21). When 

4 < 0  

equation (20) has three nonequivalent real roots, so equation (19) may have 
a wormhole solution. We rewrite (20) as 

y - m y  3 = l (22) 

where 

[9 
l =  - [1 + 3h(A + 1)] -~ 1 + ~ h ( A  + 1) 

3h 2 + 27 k2q2 m = 
2 ' 1 + 3 K ( A  + 1) 

(23) 

By using a graphical method we can evaluate the approximate solution 

rl - y - ~  

q 

rl: L q . ; .  

Fig. 1. 

of  equation (22). In Fig. 1 we give two curves to indicate 

"rl = y - my 3 (24) 

"r I = l < 0 (25) 

respectively. The intersection points y~, Y2, Y3 in Fig. 1 give the solution of 
equation (22). 
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When 

.+,/1 + 3X(A + 1) 
(26) Y 3h 

equation (24) has extreme values 

_ 2 x/1 + 3(A + 1)h, 'l]max 9h 2 ~/I + 3 ( A  + 1)h (27) 
"qmin = 9h 

Supposing Ill < <  "lqmax, then only if 

A + 1 > >  l /Oh)  (28) 

can this condition be satisfied, and solving equation (22) becomes easier. It 
is observed from Fig. 1 that the root Y2 of (22) is very small; the y3 term can 
be neglected from equation (22), and we have 

y 2 ~ l  

2 [ 9  
- -9"X[I  + 3h(a + 1)] -~ 1 + ~ X ( A  + 1) + - - K 2 q  2 

q2 1 

A + I  3~ 

(29) 

In order to meet condition (21), we must have -q2/(A + 1) > 0, so q should 
be imaginary, i.e., 

q = ilql  (30) 

where I ql is real. Then (29) becomes 

Iql 2 

Y2 A +  1 3h 
(31) 

Obviously, the root yl of  equation (22) is large, so the I term can be neglected. 
We have 

However, because 

f f l  + 3h(A + 1) ~ h.(A + I) 
(32) 

Yl = 4,~h h 

Y3 < ~/1 + 3MA + I) 
3h 
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does not satisfy condition (21), the root Y3 can be ignored. So from 

1 _ Iql__...__~ 2 1 1 + 3x/k(A + 1) 
~], = Y2 + 3h. A + 1 ' ~ '  = y' + 3h ~ 3h 

we obtain )1/2 
Iql 1 + 3,/K(A + 1) 

ab -- ~/(A + l)dO' am = 3XdO (33) 

Since A + 1 ( > >  l/3k) is very large and h in general is very small, we have 

at~ < < am 

Obviously, ab = 1 is the minimum dimension of the configuration and hence 
it is called the throat of the wormhole. 

If we demand that ab is not smaller than the Planck length lp, then 
(33) give 

1 < < A  + 1 --< Iq12 
3x t ,dO 

This condition can certainly be fulfilled. 
Therefore, the above solution (33) is just the Euclidean wormhole config- 

uration connecting a baby universe (with the size of the Planck length --ab) 
and a large mother universe (with a size of a,,). 

3. DISCUSSION 

1. No Euclidean wormhole solution has been found for the vacuum 
Einstein field equation, but we have found a wormhole solution for the 
BWT without other matter fields. Moreover, the Euclidean wormhole 
configuration is also different from that of Hawking (1988), Giddings and 
Strominger (1988), and Coleman (1988). It is a half wormhole, also called 
a baby universe. 

2. From the definition of conserved charge (14), the complex conserved 
charge (imaginary number charge) demands to(d~) < -3 /2 ,  i.e., to(do) should 
be a negative number less than -3 /2 .  We note that solar system experiments 
now only constrain the coupling constant to to Itol > 500 (Will, 1981), 
namely to > 500 or to < 500, so our result is permitted by the experiments. 

3. Our result rests on the supposition of h(do) varying slowly with dO. If 
this is not the case, we cannot find a wormhole solution for BWT. 
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